On the Steady Nature of Line-Driven Disk Winds

نویسنده

  • Nicolas A. Pereyra
چکیده

We perform an analytic investigation of the stability of line-driven disk winds, independent of hydrodynamic simulations. Our motive is to determine whether or not line-driven disk winds can account for the wide/broad UV resonance absorption lines seen in cataclysmic variables (CVs) and quasi-stellar objects (QSOs). In both CVs and QSOs observations generally indicate that the absorption arising in the outflowing winds has a steady velocity structure on time scales exceeding years (for CVs) and decades (for QSOs). However, published results from hydrodynamic simulations of line-driven disk winds are mixed, with some researchers claiming that the models are inherently unsteady, while other models produce steady winds. The analytic investigation presented here shows that if the accretion disk is steady, then the line-driven disk wind emanating from it can also be steady. In particular, we show that a gravitational force initially increasing along the wind streamline, which is characteristic of disk winds, does not imply an unsteady wind. The steady nature of line-driven disk winds is consistent with the 1D streamline disk-wind models of Murray and collaborators and the 2.5D time-dependent models of Pereyra and collaborators. This paper emphasizes the underlying physics behind the steady nature of line-driven disk winds using mathematically simple models that mimic the disk environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Steady Nature of Line-Driven Disk Winds: Application to Cataclysmic Variables

We apply the semi-analytical analysis of the steady nature of line-driven winds presented in two earlier papers to disk winds driven by the flux distribution of a standard Shakura & Sunyaev (1973) disk for typical cataclysmic variable (CV) parameters. We find that the wind critical point tends to be closer to the disk surface towards the inner disk regions. Our main conclusion, however, is that...

متن کامل

Further Criteria for the Existence of Steady Line-Driven Winds

In Paper I we showed that steady line-driven disk wind solutions can exist by using “simple” models that mimic the disk environment. Here I extend the concepts introduced in Paper I and discuss many details of the analysis of the steady/unsteady nature of 1D line-driven winds. This work confirms the results and conclusions of Paper I, and is thus consistent with the steady nature of the 1D stre...

متن کامل

Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium

We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the...

متن کامل

Theory of Outflows in Cataclysmic Variables

We review the main results from line-driven (LD) models of winds from accretion disks in cataclysmic variables (CVs). We consider LD disk wind models in the hydrodynamic (HD) and magnetohydrodynamic (MHD limits. We discuss the basic physical conditions needed for a disk wind to exist and the conditions for the wind to be steady or unsteady. We also discuss how the line-driven (LD) wind structur...

متن کامل

Line-driven disk wind models with an improved line force

We describe an efficient method of calculating the radiation pressure due to spectral lines, including all the terms in the velocity gradient tensor. We apply this method to calculate the two-dimensional, time-dependent structure of winds from luminous disks. Qualitative features of our new models are very similar to those we calculated including only the dominant terms in the tensor (Proga, St...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003